
Dara L. Kraitchman, V.M.D., Ph.D. 
The Johns Hopkins University 

School of Medicine 
Russell H. Morgan Department of Radiology and Radiological Science 

Baltimore, MD  21287 
USA 



Stem Cell Labeling, Tracking, and Delivery in Cardiovascular Disease 

Introduction: 
 The poor regenerative capacity of the heart has lead to the exploration of 
exogeneous cellular therapies. The potential of these therapies to-date has been 
determined using models that require serially animal sacrifice for histological analysis.  
Recently, magnetic labeling of cells, with clinically approved contrast agents in an off-
label use, followed by transplantation and transfusion has enabled non-invasive tracking 
of cellular distribution with MRI in animal models. In addition, these MR cellular 
labeling techniques have now been explored in non-cardiac applications in patient studies 
in Europe.(1)  Thus, using preclinical animal models the optimal dosing and timing can 
be determined by non-invasive cardiac MR serial imaging.  Moreover, these techniques 
are well poised to make the transition to human clinical trials for both efficacy studies 
and tailoring of individual patient treatment. 
 
Cellular Labeling Strategies: 

Most methods for MR cellular labeling are based on techniques developed with 
monoclonal antibodies linked to radionuclides for radionuclide imaging.  However, the 
low background signal of radionuclide imaging allows for the detection of extremely low 
numbers of cells.  Thus, MR methods require a 10-100 fold larger amplification for 
similar detection of cellular targets.  However, the advantage of labeling with MR 
contrast agents is two-fold: 1.) the cells are not exposed to radioactive species, which are 
often cytotoxic when internalized, and 2.) the lack of a half-life of MR contrast agents 
such that the cells can be imaged for 2-6 months post-transplantation if cellular 
proliferation is small. 

MR contrast agents can be divided into two major classes of agents: the 
paramagnetic and superparamagnetic iron oxide contrast agents.  Gadolinium chelates, 
which form the most widely used clinically approved MR contrast agents, are in the 
paramagnetic class of agents.  The adoption of gadolinium-based MR contrast agents for 
non-cellular imaging is largely due to the ability of these agents to decrease the T1 
relaxation time at low doses.  This decrease in T1 results in an increase signal intensity 
(i.e., hyperintense signal) of tissues exposed to the contrast agent using T1-weighted 
imaging sequences.  However, due to the high toxicity of free gadolinium, chelation of 
gadolinium is paramount.  Concerns about dechelation of the gadolinium compounds in 
applications for genetic and cellular labeling have largely limited the development of 
these agents for these purposes.    More problematic is the reduced ability of 
paramagnetic compounds when internalized to affect extracellular water, and, hence, the 
amplification ability of the contrast agent is greatly reduced.  

The superparamagnetic iron oxide (SPIO) particles were developed shortly after 
the gadolinium-based contrast agents.(2,3)  The large magnetic moments, which are more 
than 3 orders of magnitude greater than paramagnetic-based contrast agents, of SPIO 
particles cause a greater effect on T2  relaxation and a smaller effect on T1 relaxation.    
Thus, on T2

*-weighted images, SPIO particles appear hypointense and create a much 
larger signal change or contrast per unit of metal particle than paramagnetic contrast 
agents.    Thus, small quantities of SPIO particles can be used for cellular labeling yet 
with a much larger amplification effect than paramagnetic compounds.  This is important 



because less agent must be internalized to create image contrast thereby limiting cellular 
toxicity. Moreover, should the SPIO be degraded, the free iron that is released does not 
appreciably expand the native iron pool and, thus, can be degraded along normal iron 
recycling pathways.  Most commercially available forms of SPIOs and ultrasmall SPIOs 
(USPIOS) have coatings to prevent particle aggregation.   One of the most common 
U/SPIO coatings is dextran, which is a convenient surface for binding ligands and other 
functional groups for labeling. 

 
Gadolinium-based labeling techniques: 

Modo and colleagues have developed a gadolinium-based compound linked to 
dextran and a fluorescent dye, rhodamine, that can be taken up by stem cells in vitro for 
intracellular labeling (4).  These exogenously labeled stem cells have been implanted in a 
rat stroke model, and the migration has been tracked in vivo by MRI and validated by 
detection of the fluorescent label by histology (5).  Using a calcium phosphate 
transfection technique, Rudelius et al. performed intracellular labeling of neuronal and 
embryonic stem cells with Gd-DTPA (6).  Using this labeling technique Daldrup-Link et 
al. were able to achieve intracellular labeling of hematopoietic progenitor cells that 
resulted in significant lengthening of R1 such that detection of  500,000 cells or greater 
should be possible (7).  However, as stated previously, the internalization of these Gd 
particles will greatly reduce the potential contrast enhancement imparted by these agents.  
Thus, due to amplification problems and toxicity concerns, iron oxide compounds remain 
the preferred agents for cellular labeling. 

One exception is a  targeted nanoparticle containing a liquid perfluorocarbon core 
with chelated gadolinium (Gd) complexes incorporated into the outer surface group 
developed by the group of  Wickline, Lanza, and co-workers .(8,9)  They have overcome 
the amplification problem with gadolinium-based agents by two means: 1.) numerous Gd 
molecules can be bound to the surface of the nanoparticle and 2.) antibody receptor 
complexes on the nanoparticle are used for targeting so that the particle is not internalized 
which would reduce T1 relaxivity.    Thus, changes in T1 relaxation can be achieved in 
vivo.   In addition, therapeutics incorporated into the surface of the nanoparticle for drug 
delivery.(10,11)  By modifying the antibody receptor complex, targeting of this agent has 
been performed to fibrin (i.e., thrombus) for cardiovascular applications.(8,12,13)  To 
decrease the potential toxicity of the gadolinium chelate, several paramagnetic 
formulations have been explored, which have also increased the relaxivity of the agent 
resulting in enhanced signal enhancement after injection.(12)  The most exciting 
cardiovascular application is the targeting to markers of angiogenesis (i.e., ανβ3 integrins) 
using this agent.(13,14)  The fluorine signal of the nanoparticle can also be detected with 
MR spectroscopy providing an independent method for validating the bright Gd signal 
detected in proton imaging.  In addition, the introduction of higher field strength magnets 
for clinical imaging may overcome the signal-to-noise issues associated with 19F 
spectroscopy and imaging. 
 
U/SPIO labeling techniques: 
The initial methods for cellular MR labeling with dextran-coated iron oxides were based 
on radionuclide monoclonal antibody techniques where the lysine groups of the 
monoclonal antibodies were joined to the alcohol groups of the dextrans.(15).  Because  



mab techniques are often species specific, transfection agents, such as poly-L-lysine, 
lipofectin, or protamine sulfate, were quickly adopted as an alternate method for 
internalization of U/SPIOs. 

Typically, the U/SPIOs are mixed with these transfection agents, which results in 
complexes via electrostatic interactions of the two agents.(16,17)    Care must be taken to 
titrate the concentration of both agents so that good cellular uptake occurs without the 
formation of precipitates of the complex.  Using 25 μg Fe/ml ferumoxides (Feridex, 
Berlex Laboratories, Inc.) and 375 ng/ml p poly-L-lysine (PLL), the complex is then 
incubated with the cells in culture media for 24-48 hours resulting in a consistent 
endosomal iron uptake of 10-20 pg Fe per cell in a wide variety of cell lines without 
species specificity.(18-25). While Feridex-PLL labeling of human mesenchymal stem 
cells (MSCs) does not affect cell proliferation or viability, chondrogenic differentiation 
assays performed in vitro were inhibited whereas osteogenic and adipogenic 
differentiation were not impaired.(26,27)  Arbab and colleagues have shown using 

transfection of SPIOs with protamine sulfate that chondrogenic capacity may be less 
inhibited.(28) 
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Figure 1:  Short-axis images of 
the heart.  Using a fast, gradient 
echo imaging technique, SPIO-
labeled mesenchymal stem cells 
injected under x-ray fluoroscopy 
can be targeted to the peripheral 
of the infarct (left).  SPIO-labeled 
cells appear as hypointense 
signal (arrows).  The myocardial 
infarction (MI) appears 
hyperintense on from delayed 
contrast-enhanced MRI (right) 

More recently a method that avoids the use of transfection agents entirely has 
been developed called “magnetoelectroporation” or MEP.(29)  MEP is based on 
electroporation techniques used to transfect cells with viruses or DNA.  However, for 
MEP, a much smaller voltage pulse is applied to transfer the SPIO into the cell.  No 
affect on cell viability, proliferation, or differentiation was noted in a variety of cells after 
MEP.  In addition, the possibility exists to use MEP to transfer other MR contrast agents 
intracellularly.  The primary benefit of MEP is that cells can be labeled in a few 
milliseconds whereas PLL-SPIO-transfection techniques required cell culturing for 1-2 
days. 



SPIO-labeled stem cells have been used for targeted delivery and tracking of stem 
cells in both acute and chronic myocardial infarction animal models.(21,22,30-38) Using 
MR fluoroscopic delivery of SPIO-labeled stem cells, the cells can be targeted to specific 
regions of the infarcted heart, and the success of each injection can be immediately 
ascertained.(30,31,35)  Studies are currently ongoing to test the efficacy of specific stem 

cells or progenitor cells for cardiac regeneration as well as determining the optimal 
timing of stem cell injections.  However, all techniques suffer from the inability to 
distinguish stem cells containing SPIOs to stem cells that have died and left the iron 
nanoparticles behind.  Moreover, the detection limit of SPIO-labeled stem cells still 
remains far below the detection limit of radionuclide techniques.(39) 

Water Suppression (on-resonant, BWWater)

A)

tMz

tMz

180° 180°
RF

t

Fat Suppression Imaging

Fat Protons off-resonance

Protons on-resonance

B)

C)

95°

Water Suppression (on-resonant, BWWater)

A)

tMz

tMz

180° 180°
RF

t

Fat Suppression Imaging

Fat Protons off-resonance

Protons on-resonance

B)

C)

95°

Figure 2:  Positive marker 
imaging of SPIO-labeled cells 
using Inversion Recovery with 
ON resonant water suppression 
(IRON).  A spectrally-selective 
radiofrequency pulse is used to 
suppression water.  Fat 
suppression can be obtained with 
a variety of techniques including 
double inversion recovery as 
shown here.  IRON prepulses are 
played out prior to the normal 
imaging sequence.  

Enhanced Methods for Imaging SPIO-labeled Cells:

 

Figure 3:  Inversion Recovery with ON 
resonant water suppression (IRON) of a short-
axis image of a heart after intramyocardial 
injection of SPIO-labeled mesenchymal stem 
cells.  SPIO-labeled stem cells appear 
hyperintense with IRON (arrow) imaging 
rather than hypointense as seen with T2*-
weighted imaging techniques.  The 
myocardium appears dark using the IRON 
technique. 

 Typically, SPIO-labeled stem cells exploit the signal void or susceptibility artifact 
created by the iron compound. (Figure 1)  Recently, several groups have modified a 
technique developed by Seppenwolde and co-workers (40) to create positive signal from 
the SPIO-labeled cells.  All these positive-marker techniques (41-43) rely on imaging the 
“off-resonant” protons created by the perturbation of the local magnetic field by the iron-
labeled cell (Figure 2).  One technique developed by Coristine et al. uses dephasing-
rephasing gradients such that only the off-resonant protons are not rephrased and appear 
bright.  Another technique by Cunningham et al. employs a spectrally-selectively pulse to 
excite a small spectrum of off-resonant protons to create a hyperintense signal close to 
the cells.  This technique has been used to image SPIO-labeled embryonic stem cells in a 



mouse hindlimb ischemia model.  The final technique by Stuber et al. uses an Inversion 
Recovery with ON resonant water suppression (IRON) to suppresses signal from on-
resonant water and fat.  Theoretically, the contribution of off-resonant protons is greatest 
with IRON resulting in the high contrast-to-noise (CNR) ratio of the positive marker 
techniques.  IRON MRI has been used to image SPIO-labeled stem cells in beating heart 
(Figure 3). 
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